Accurate predictions of nonpolar solvation free energies require explicit consideration of binding-site hydration.

نویسندگان

  • Samuel Genheden
  • Paulius Mikulskis
  • LiHong Hu
  • Jacob Kongsted
  • Pär Söderhjelm
  • Ulf Ryde
چکیده

Continuum solvation methods are frequently used to increase the efficiency of computational methods to estimate free energies. In this paper, we have evaluated how well such methods estimate the nonpolar solvation free-energy change when a ligand binds to a protein. Three different continuum methods at various levels of approximation were considered, viz., the polarized continuum model (PCM), a method based on cavity and dispersion terms (CD), and a method based on a linear relation to the solvent-accessible surface area (SASA). Formally rigorous double-decoupling thermodynamic integration was used as a benchmark for the continuum methods. We have studied four protein-ligand complexes with binding sites of varying solvent exposure, namely the binding of phenol to ferritin, a biotin analogue to avidin, 2-aminobenzimidazole to trypsin, and a substituted galactoside to galectin-3. For ferritin and avidin, which have relatively hidden binding sites, rather accurate nonpolar solvation free energies could be obtained with the continuum methods if the binding site is prohibited to be filled by continuum water in the unbound state, even though the simulations and experiments show that the ligand replaces several water molecules upon binding. For the more solvent exposed binding sites of trypsin and galectin-3, no accurate continuum estimates could be obtained, even if the binding site was allowed or prohibited to be filled by continuum water. This shows that continuum methods fail to give accurate free energies on a wide range of systems with varying solvent exposure because they lack a microscopic picture of binding-site hydration as well as information about the entropy of water molecules that are in the binding site before the ligand binds. Consequently, binding affinity estimates based upon continuum solvation methods will give absolute binding energies that may differ by up to 200 kJ/mol depending on the method used. Moreover, even relative energies between ligands with the same scaffold may differ by up to 75 kJ/mol. We have tried to improve the continuum solvation methods by adding information about the solvent exposure of the binding site or the hydration of the binding site, and the results are promising at least for this small set of complexes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Erratum to: A combined treatment of hydration and dynamical effects for the modeling of host-guest binding thermodynamics: the SAMPL5 blinded challenge

As part of the SAMPL5 blinded experiment, we computed the absolute binding free energies of 22 host-guest complexes employing a novel approach based on the BEDAM single-decoupling alchemical free energy protocol with parallel replica exchange conformational sampling and the AGBNP2 implicit solvation model specifically customized to treat the effect of water displacement as modeled by the Hydrat...

متن کامل

Field-SEA: A Model for Computing the Solvation Free Energies of Nonpolar, Polar, and Charged Solutes in Water

Previous work describes a computational solvation model called semi-explicit assembly (SEA). The SEA water model computes the free energies of solvation of nonpolar and polar solutes in water with good efficiency and accuracy. However, SEA gives systematic errors in the solvation free energies of ions and charged solutes. Here, we describe field-SEA, an improved treatment that gives accurate so...

متن کامل

Surveying implicit solvent models for estimating small molecule absolute hydration free energies

Implicit solvent models are powerful tools in accounting for the aqueous environment at a fraction of the computational expense of explicit solvent representations. Here, we compare the ability of common implicit solvent models (TC, OBC, OBC2, GBMV, GBMV2, GBSW, GBSW/MS, GBSW/MS2 and FACTS) to reproduce experimental absolute hydration free energies for a series of 499 small neutral molecules th...

متن کامل

The SGB/NP hydration free energy model based on the surface generalized born solvent reaction field and novel nonpolar hydration free energy estimators

The development and parameterization of a solvent potential of mean force designed to reproduce the hydration thermodynamics of small molecules and macromolecules aimed toward applications in conformation prediction and ligand binding free energy prediction is presented. The model, named SGB/NP, is based on a parameterization of the Surface Generalized Born continuum dielectric electrostatic mo...

متن کامل

Assessing the Accuracy of Inhomogeneous Fluid Solvation Theory in Predicting Hydration Free Energies of Simple Solutes

Accurate prediction of hydration free energies is a key objective of any free energy method that is applied to modeling and understanding interactions in the aqueous phase. Inhomogeneous fluid solvation theory (IFST) is a statistical mechanical method for calculating solvation free energies by quantifying the effect of a solute acting as a perturbation to bulk water. IFST has found wide applica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 133 33  شماره 

صفحات  -

تاریخ انتشار 2011